STUDIES ON TOTAL PHOTOLYTIC SYNTHESES OF ALKALOIDS—IV*

MODIFIED TOTAL SYNTHESES OF FLAVINANTINE, BRACTEOLINE, ISOBOLDINE AND MECAMBRINE BY PHOTOLYSIS

T. KAMETANI, H. SUGI, S. SHIBUYA and K. FUKUMOTO

Pharmaceutical Institute, Tohoku University, Aobayama, Sendai, Japan

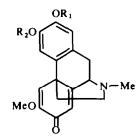
(Received in Japan 28 April 1971; Received in the UK for publication 1 July 1971)

Abstract—Photolysis of the diazonium salt from 6'-aminoorientaline (10) gave flavinantine (1) and bracteoline (5). The same reaction of 6'-bromoreticuline (17) and its analog (21) afforded isoboldine (6) and mecambrine (fugapavine) (7), respectively.

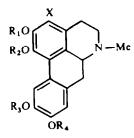
PREVIOUSLY¹ we reported a total synthesis of flavinantine (1) by debenzylation of the morphinandienone (2), which was obtained by a modified Pschorr reaction²⁻⁴ of the aminoisoquinoline (3) derived from the 1-(2-nitrobenzyl)-isoquinoline (4). The nature of the reaction of the above synthesis, however, possessed fundamental defects. The first one was regarding the reduction of 4 to the aminoisoquinoline (3); the debenzylation occurred as a side reaction, and therefore, it was necessary to separate 4 from by-products. The second defect was that, in the debenzylation of 2 to flavinantine (1), several rearranged products were obtained because the morphinandienone was unstable in acid. Therefore, we examined the modified synthesis of flavinantine (1) and bracteoline (5) by a photo-Pschorr reaction, ⁵ and also describe the total syntheses of isoboldine (6) and mecambrine (7) by photolysis of the phenolic bromoisoquinolines.

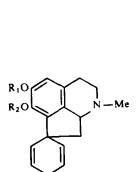
The nitration of O,O-dibenzylorientaline (8),⁶ followed by the reaction of the 2'nitrobenzylisoquinoline (9) with Zn and hot HCl gave 6'-aminoorientaline (10). The diazotization as usual¹⁻⁴ of 10, followed by irradiation of the resulting diazonium salt (11) in diluted H₂SO₄ with a Hanovia 450 W mercury lamp at 5–10° using a pyrex filter, gave two products. One of them, obtained in 2% yield, was flavinantine (1), which was identical with the authentic sample¹ according to spectroscopic data. The other one, C₁₉H₂₁NO₄ (M⁺, *m/e* 327 and microanalysis), m.p. 210–211°, in 2% yield was assigned bracteoline (5), an alkaloid from *Papaver bracteatum*,⁸ by the UV [λ_{max} 270, 279 and 305 mµ], NMR [τ 3·52 (C₃—H), 3·30 (C₈—H) and 2·03 (C₁₁—H)] and mass spectra [(*m/e* 327 (M⁺), 326, 312, 296].⁷

It is interesting that although the thermal decomposition of the diazotized phenolic isoquinoline (12) gave 3-nitropredicentrine (13), an abnormal product, as a main product,⁹ the photo-Pschorr reaction yielded a different result.


In the above photolytic reaction, an aromatic radical (14), derived from the decomposition of 11 by photolysis, was hypothesized to be a key intermediate in the synthesis of 1 and 5. Therefore, a radical formation of the C_6 -position from an

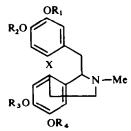
^{*} Part III — Tetrahedron 27, 5367 (1971)





MeO HO

1: $R_1 = Me$; $R_2 = H$ 2: $R_1 = Me$; $R_2 = CH_2Ph$ 20: $R_1 = H$; $R_2 = Me$



19

Me

5: $R_1 = R_4 = Me$; $R_2 = R_3 = X = H$ 6: $R_1 = R_3 = Me$; $R_2 = R_4 = X = H$ 13: $R_1 = H$; $R_2 = R_3 = R_4 = Me$; $X = NO_2$ $7: \mathbf{R}_1 + \mathbf{R}_2 = -\mathbf{C}\mathbf{H}_2 - \mathbf{C}\mathbf{H}_2$

3: $R_1 = R_3 = R_4 = Me; R_2 = CH_2Ph; X = NH_2$ 4: $R_1 = R_3 = R_4 = Me; R_2 = CH_2Ph; X = NO_2$ 8: $R_1 = R_3 = Me; R_2 = R_4 = CH_2Ph; X = H$ 9: $R_1 = R_3 = Me; R_2 = R_4 = CH_2Ph; X = NO_2$ 10: $R_1 = R_3 = Me; R_2 = R_4 = H; X = NH_2$ 11: $R_1 = R_3 = Me; R_2 = R_4 = H; X = N_2^+$ 12: $R_1 = R_2 = R_4 = Me; R_3 = H; X = N_2^+$ 14: $R_1 = R_3 = Me; R_2 = R_4 = H; X = radical$ 15: $R_1 + R_2 = -CH_2-; R_3 = Me; R_4 = CH_2Ph; X = Br$ 16: $R_1 + R_2 = -CH_2-; R_3 = Me; R_4 = H; X = Br$ 17: $R_1 = R_4 = H; R_2 = R_3 = Me; X = Br$ 18: $R_1 = R_4 = X = H; R_2 = R_3 = Me$ appropriate compound would promise formation of a carbon-carbon bond. As a radial formation under photolysis could occur in a cleavage of a carbon-halogen bond,¹⁰ we first investigated the photolytic electrocyclic reaction of the bromoiso-quinoline (15),¹¹ the most easily obtained among the halogenoisoquinoline, however, the expected compound was not obtained.

The coupling reaction of the C6-radical with an isoquinoline ring would proceed more smoothly in a phenolic isoquinoline than in a methoxylated one. Thus, the phenolic bromoisoquinoline (16)¹¹ was irradiated in the usual way^{5, 12}, but the morphinandienone and/or aporphine could not be obtained. The third attempt was by photolysis in basic media. We presumed that coupling of a radical formed in a reaction would occur more easily in the phenolate anion than in the phenolic hydroxyl. Thus, 6'-bromorecticuline (17)¹³ was irradiated for 7 hr at room temperature in the presence of NaOH with a Hanovia 450 W mercury lamp, using a pyrex filter. Thus, isoboldine (6)¹⁴ was obtained in 19.5% yield in addition to reticuline (18) and the cleaved products isovanillin and thalifoline (19).¹⁵ These compounds were identical, according to spectroscopic and chromatographic comparisons, with authentic samples. In this reaction, the compound (M^+ 327) showing the α , β -unsaturated ketone system in its IR spectrum was obtained as a trace, the structure of which remained unclear, but was perhaps formed by photo-rearrangement of pallidine (20). Moreover, the desired morphinandienone, pallidine (20), was formed, but could not be separated in a chromatographically pure state because of contamination with isoboldine.

This photolytic electrocyclic reaction was also applied to a synthesis of the proaporphine. Irradiation of 8-bromo-1,2,3,4-tetrahydro-1-(4-hydroxybenzyl)-2-methyl-6,7-methylenedioxyisoquinoline (**21**),^{16,17} as in the synthesis of isoboldine, gave mecambrine (fugapavine) (7) in 1% yield, an alkaloid from the *Papaver* species.¹⁸⁻²⁰ Structural assignment was by spectroscopic methods. The IR spectrum showed the presence of a cross-conjugated cyclohexadienone system,^{21,22} which conclusion was supported by the UV¹³ and mass spectra.^{18,19,21,22,24} The NMR spectrum¹⁸ revealed the olefinic protons at τ 3:55-3:90 (α , α') and 2:90-3:35 (β , β') as two AB quartets with fine structure^{21,22} and a pattern closely similar to that of pronuciferine

Scheme II

(22).²¹ These data indicated the product to be (\pm) -mecambrine (7), and, in fact, synthetic and natural mecambrines were proved to be identical by $IR(CHCl_3)$, UV-(MeOH), NMR(CDCl₃) and chromatographic comparisons, which corroborated the structure suggested by Bick.²⁵

EXPERIMENTAL

IR spectra (CDCl₃) with a Hitachi EPI-3 recording spectrometer, and UV (MeOH) spectra with a Hitachi EPS-3 recording spectrometer. Mass spectra were measured with a Hitachi RMU-7 spectrometer. NMR spectra were taken with a Hitachi R-20 in CDCl₃ with TMS as internal standard.

O,O-Dibenzyl-6'-nitroorientaline (9). To a stirred solution of 9.6 g of O,O-dibenzylorientaline (8)⁶ in CHCl₃ (100 ml) was added a solution of 13 ml of HNO₃ (d = 1.42) in 25 ml of glacial AcOH at 0-5° during 15 min. After stirring for 45 min at constant temperature, the mixture was poured into ice-water, basified with 10% NH₄OH and extracted with CHCl₃. The extract was washed with water and dried over Na₂SO₄. Evaporation of solvent afforded 11 g of brownish oil, recrystallized from CHCl₃/MeOH to give 8 g of 9 as pale yellow needles: m.p. 146-147°; τ 7.64 (NCH₃, 3, s), 6.27 and 6.39 (2OCH₃, 6, each s), 50 and 5.15 (2OCH₂Ph, 4, each s), 3.57, 3.68 and 3.78 (aromatic protons, 3, each s), 2.54 (C₅-H, 1, s). (Calcd. for C₃₃H₃₄N_{2O₆}: C, 71.46; H, 6.18; N, 5.05. Found: C, 71.02; H, 5.82; N, 5.17%).

6'-Aminoorientaline (10). To a stirred solution of 2 g of nitroisoquinoline (9) in a mixture of 30 ml of AcOH, conc. HCl (40 ml) and water (10 ml) was added in portions 12 g of Zn powder during 15 min at room temperature. After stirring for 30 min at room temperature, the mixture was heated on a water-bath for 30 min. After removal of Zn by filtration, the mixture was basified with 28% NH₄OH and extracted with CHCl₃. The extract was washed with water and dried over Na₂SO₄. Removal of the solvent gave 700 mg of 10 as brownish powder. v_{max} 3500 cm⁻¹ (OH), τ 7:55 (N--CH₃, 3, s), 6:21 and 6:37 (2OCH₃, 6, each s), 4:98 (2OH, NH₂, 4, broad s), 3:55, 3:57, 3:72 and 3:79 (aromatic protons, 4, each s). Used for the following reaction without further purification.

Photolysis of diazotized 6'-aminoorientaline (10). To a stirred solution of 2 g of the above aminoisoquinoline (10) in 100 ml of 5% H_2SO_4 was added dropwise a solution of 420 mg of NaNO₂ in 7 ml of water at 0–5° during 20 min. After the stirring for 1 hr, the mixture was diluted with 900 ml of water below 5°. The stirred mixture was irradiated with a Hanovia 450 W mercury lamp using a pyrex filter for 4 hr below 10°. After reaction, the mixture was made basic with 28% NH₄OH and extracted with CHCl₃. The extract was washed with water, dried over Na₂SO₄ and evaporated to leave 220 mg of brownish syrup, chromatographed on 5 g of silica gel. Removal of the elution with 2% MeOH-CHCl₃ afforded 60 mg of a mixture of flavinantine (1)¹ and bracteoline (5), which was successively chromatographed on 5 g of neutral alumina. Evaporation of the elution with 1% MeOH-CHCl₃ left 10 mg of flavinantine (1), spectroscopic data identical with those of the authentic specimen.¹ Successive elution with 3% MeOH-CHCl₃ gave 15 mg of bracteoline (5) as colorless needles, m.p. 210–211° (MeOH), identified with an authentic specimen¹¹ by spectroscopic comparison.

Photolysis of 6'-bromoreticuline (17). A solution of 2 g of 6'-bromoreticuline¹³ and 2 g of NaOH in water (820 ml) was irradiated with a Hanovia 450 W mercury lamp using a pyrex filter for 7 hr at room temperature with stirring. This was basified with solid NH₄Cl and extracted with CHCl₃. The extract was washed with water and dried over Na₂SO₄. Evaporation of solvent left 1.5 g of brown gum, chromatographed on 50 g of silica gel. The first CHCl₃ eluant gave 30 mg of isovanillin, identical with an authentic sample. The CHCl₃-MeOH (v/v 99:5:0:5) eluate gave 20 mg of thalifoline (19), m.p. 210–211°, identical with the authentic sample.¹⁵ The following eluant afforded 4 mg of the unknown compound, m.p. 223–224°, as colorless prisms (MeOH). v_{max} 3500, 1648 cm⁻¹, λ_{max} 261, 282th and 299th mµ; m/e 327 (M⁺), 310 and 282; τ 7:44 (NCH₃, 3, s), 6:16 (OCH₃, 3, s), 6:10 (OCH₃, 3, s). The CHCl₃-MeOH (v/v 99:1) eluant gave 310 mg (19:5%) of isoboldine (6) as pale yellow prisms (MeOH), m.p. 185–190° (decomp.), spectroscopic data superimposable upon those of authentic sample.¹⁴ The successive eluant yielded 258 mg of a mixture of pallidine (20) and isoboldine (6), not separable by chromatography. The IR spectrum of this mixture was identical with that of a mixture of the authentic pallidine and isoboldine (*ca*. 1:1). The CHCl₃-MeOH (v/v 98:2) eluate furnished 350 mg of reticuline (18) as a pale yellow viscous syrup, identical with an authentic sample.²⁶

Photolysis of 8-bromo-1,2,3,4-tetrahydro-1-(4-hydroxybenzyl)-2-methyl-6,7-methylenedioxyisoquinoline (21). A solution of 2.4 g of the phenolic bromoisoquinoline (21) $^{16.17}$ and 1.5 g of NaOH in 11 of 50% aqueous EtOH was irradiated as in the synthesis of isoboldine (6). Evaporation of solvent gave residue which was treated with excess NH₄Cl and extracted with CHCl₃. The extract was washed with water, dried over Na₂SO₄ and evaporated to leave 2 g of brown gum, which was subjected to column chromatography on 30 g of silica gel. The first CHCl₃-MeOH (v/v 99:1) eluant gave 220 mg of a crude mecambrine, and the second eluant recovered 600 mg of starting material.

The crude mecambrine was chromatographed on 10 g alumina (neutral, activity 1) eluting with C_6H_6 -CHCl₃ (v/v 8:3) to give 13 mg (1%) of mecambrine (7) as colorless needles (from CHCl₃-ether), m.p. 197-198° (decomp.), ν_{max} 1665, 1648 and 1628 cm⁻¹; λ_{max} 294 and 231 mµ; τ 7.63 (NCH₃, 3, s), 4.22 $(-OC\underline{H}_2O -, 2, q, J = 1.5 \text{ Hz})$, 3.55–3.90 (α, α' -olefinic protons, 2, m), 3.51 (aromatic protons, 1, s), and 2.90–3.35 (β,β' -olefinic protons, 2, m), *m/e* 295 (M⁺), 294 (M⁺—H), 266 (M⁺—H—CO) and 252 (M⁺—CH₂ = NMe). (Calcd. for C₁₈H₁, NO₃: C. 73.20: H. 5.80: N. 4.74. Found : C. 72.94: H. 5.79: N. 4.96 %).

Acknowledgement—We wish to express our gratitude to Professor J. Slavik for providing natural mecambrine and Dr. S. Asada, Kobe Women's College of Pharmacy for spectral data of a natural product. We also thank Miss T. Yoshida, Miss R. Kato, Miss A. Kawakami, Miss C. Yoshida, Miss R. Suzuki, and Miss G. S. Fox. for spectral measurements.

REFERENCES

- ¹ T. Kametani, T. Sugahara, H. Yagi and K. Fukumoto, J. Chem. Soc. (C) 1063 (1969)
- ² T. Kametani, K. Fukumoto, F. Satoh and H. Yagi, *Ibid.* 520 (1969)
- ³ T. Kametani, K. Fukumoto and T. Sugahara, Ibid. 801 (1969)
- ⁴ T. Kametani, M. Ihara, K. Fukumoto and H. Yagi, *Ibid.* 2030 (1969)
- ⁵ T. Kametani, K. Fukumoto and K. Shishido, Chem. & Ind. 1566 (1970)
- ⁶ A. R. Battersby, T. H. Brown and J. H. Clements, J. Chem. Soc. 4550 (1965)
- ⁷ M. Shamma and W. A. Slusarchyk, Chem. Rev. 64, 59 (1964)
- ⁸ K. Heydenreich and S. Pfeifer, Pharmazie 22, 124 (1967)
- ^o T. Kametani, K. Takahashi, T. Sugahara, M. Koizumi and K. Fukumoto, J. Chem. Soc. (C) 1032 (1971)
- ¹⁰ S. M. Kupchan and R. M. Kanojia, Tetrahedron Letters 5353 (1966)
- ¹¹ T. Kumetani, S. Shibuya, H. Sugi, O. Kusama and K. Fukumoto, J. Chem. Soc. (C) (in press)
- ¹² T. Kametani, M. Koizumi and K. Fukumoto, Chem. Comm. 1157 (1970)
- ¹³ A. H. Jackson and J. A. Martin, J. Chem. Soc. (C) 2061 (1966)
- ¹⁴ T. Kametani, M. Ihara and T. Honda, *Ibid.* 1060 (1970)
- ¹⁵ T. Kametani, M. Koizumi and K. Fukumoto, Ibid. 1792 (1971)
- ¹⁶ T. Kametani and K. Wakisaka, J. Pharm. Soc. Japan 86, 984 (1966)
- ¹⁷ T. Kametani and K. Wakisaka, Ibid. 88, 483 (1968)
- ¹⁸ K. L. Stuart and M. P. Cava, Chem. Rev. 68, 321 (1968)
- ¹⁹ K. Bernauer and W. Hofheinz, Progress in the Chemistry of Organic Natural Products 26, 246 (1968)
- ²⁰ T. Kametani, The Chemistry of the Isoquinoline Alkaloids, p. 76 and 246, Hirokawa Publishing Company, Inc. (Tokyo) and Elsevier Publishing Co., Amsterdam (1968)
- ²¹ T. Kametani and H. Yagi, J. Chem. Soc. (C) 2182 (1967)
- ²² T. Kametani, H. Yagi, F. Satoh and K. Fukumoto, Ibid. 271 (1968)
- 23 S. Pfeifer and L. Kuhn, Pharmazie 23, 267 (1968)
- ²⁴ M. Baldwin, A. G. Loudon, A. Maccoll, L. J. Haynes and K. L. Stuart, J. Chem. Soc. (C) 154 (1967)
- ²⁵ I. R. C. Bick, Experimentia 20, 362 (1964)
- ²⁶ T. Kametani, K. Fukumoto, A. Kozuka, H. Yagi and M. Koizumi, J. Chem. Soc. (C) 2034 (1969)